

## Please stick the barcode label here. Candidate Number

## **CHEMISTRY PAPER 1**

**SECTION B: Question-Answer Book B** 

This paper must be answered in English

## INSTRUCTIONS FOR SECTION B

- (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7 and 9.
- (2) Refer to the general instructions on the cover of the Question Paper for Section A.
- (3) This section consists of TWO parts, Parts I and II.
- (4) Answer ALL questions in both Parts I and II. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (5) An asterisk (\*) has been put next to the questions where one mark will be awarded for effective communication.
- (6) Supplementary answer sheets will be provided on request. Write your candidate number, mark the question number box and stick a barcode label on each sheet, and fasten them with string INSIDE this Question-Answer Book.
- (7) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2015

| PART | I |
|------|---|
|------|---|

Answer ALL questions. Write your answers in the spaces provided.

- 1. Argon and chlorine are elements in the same period of the Periodic Table.
  - (a) Draw the electron diagram for a molecule of argon, showing electrons in all shells.

(1 mark)

(b) What is the type of intermolecular force in chlorine gas?

(1 mark)

(c) Complete the table below by stating the natural source and the method of extraction from the source for each element.

| Element  | Natural source | Method of extraction |
|----------|----------------|----------------------|
| Argon    |                |                      |
| Chlorine |                |                      |

(4 marks)

Answers written in the margins will not be marked.

(3 marks)

Answers written in the margins will not be marked.

(b) adding sodium sulphite solution to acidified potassium dichromate solution until in excess

For each of the following experiments, state the expected observation, and write the chemical equation(s)

passing carbon dioxide gas into limewater until in excess

(2 marks)

Answers written in the margins will not be marked.

for the reaction(s) involved.

(a)

| 3. | Alumi | nium and i | iron are commonly used construction materials.                                                                                                                                                                                  |
|----|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (a)   | Suggest    | t why iron was used earlier than aluminium in history.                                                                                                                                                                          |
|    |       |            | (1 mark                                                                                                                                                                                                                         |
|    | (b)   | formula    | pound contains iron and oxygen only. In an experiment for determining the empirical of this compound, 2.31 g of the compound was heated with carbon monoxide. Upon the reaction, carbon dioxide and 1.67 g of iron were formed. |
|    |       | (i)        | Calculate the empirical formula of this compound.                                                                                                                                                                               |
|    |       | (ii)       | Write the chemical equation for the reaction involved in the experiment.                                                                                                                                                        |
|    |       | (11)       | write the chemical equation for the feaction involved in the experiment.                                                                                                                                                        |
|    |       | (iii)      | As carbon monoxide is poisonous, suggest one necessary safety precaution in carryin out the experiment.                                                                                                                         |
|    |       |            | (4 marks                                                                                                                                                                                                                        |

3. (c) Explain why a galvanised iron object does not easily rust even if the zinc layer is broken.

(2 marks)

(d) Explain why anodisation can prevent aluminium objects from corrosion.

(2 marks)

Answers written in the margins will not be marked.

| 4. |     | acid accumulator is a secondary cell containing sulphuric acid. It is commonly used in starting up vehicle engines.                                                                                                                   |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (a) | What is meant by the term 'secondary cell'?                                                                                                                                                                                           |
|    | (b) | (1 mark) Suggest why a lead-acid accumulator is suitable for starting up motor vehicle engines.                                                                                                                                       |
|    | (c) | (1 mark) State one environmental impact that would be imposed from the disposal of lead-acid accumulators.                                                                                                                            |
|    | (d) | (1 mark)  A student diluted a sample of concentrated sulphuric acid for making a lead-acid accumulator.                                                                                                                               |
|    | (u) | (i) Describe how concentrated sulphuric acid can be diluted in a laboratory. State a safety precaution needed during the dilution process.                                                                                            |
|    |     | <ul> <li>(ii) 5.00 cm³ of the solution in the lead-acid accumulator made contains 2.48 g of sulphuric acid. Calculate the molarity of the sulphuric acid in the solution.</li> <li>(Molar mass of sulphuric acid = 98.1 g)</li> </ul> |
|    |     | (5 marks)                                                                                                                                                                                                                             |

Please stick the barcode label here.

|  | E:      | xplain, with the aid of a chemical equation, why NH <sub>3</sub> (aq) is regarded as a weak alkali. ould show that NH <sub>3</sub> (aq) is a weaker alkali than NaOH(aq) through an experiment. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|--|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|  |         |                                                                                                                                                                                                 | (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n     |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  | *** - * |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 100 |
|  |         |                                                                                                                                                                                                 | I show that the state of the st |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|  |         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

6. The steps involved in the reaction of methane with bromine forming CH<sub>3</sub>Br can be shown by the following diagram. Only electrons in the outermost shells are shown.



(a) Name the type of the reaction for the formation of CH<sub>3</sub>Br from methane and bromine.

(1 mark)

Answers written in the margins will not be marked.

(b) State the condition needed for the reaction to occur.

(1 mark)

(c) State the expected observation for the reaction.

(1 mark)

(d)

6.

(1 mark)

- (e) The reaction of methane with bromine can also form other single-carbon-containing organic compounds.
  - (i) Suggest one such compound.

(ii) Suggest a condition so that the reaction of methane with bromine can form more CH<sub>3</sub>Br but less other organic compounds.

(2 marks)

Answers written in the margins will not be marked.

7. Refer to the set-up for electroplating an object shown in the diagram below.



(a) Explain why oily dirts on the object should be removed before electroplating.

(1 mark)

(b) Copper(II) sulphate is an electrolyte. What is meant by the term 'electrolyte'?

(1 mark)

(c) List ALL the ions existing in the solution.

(1 mark)

(d) Explain why copper(II) ions are preferentially discharged during the electroplating process.

(1 mark)

| eq        |  |
|-----------|--|
| mar       |  |
| þe        |  |
| will not  |  |
| Ξ         |  |
| ≥         |  |
| mar       |  |
| the       |  |
| Ξ         |  |
| written   |  |
| Answers v |  |
|           |  |

| 7. | (e) | Write the half equation of the change that occurs at the anode.                                                                                                                                                                                                                                                   |                                                    |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|    | (f) | (1 mark) State the observable change, if any, in the solution during the electroplating process.                                                                                                                                                                                                                  |                                                    |
|    |     | (1 mark)                                                                                                                                                                                                                                                                                                          |                                                    |
|    | (g) | It is known that $2.28 \times 10^{22}$ electrons have passed through the external circuit during the electroplating process. Calculate the mass of copper that would theoretically be plated on the object.  (Relative atomic mass: $Cu = 63.5$ ; Avogadro's constant = $6.02 \times 10^{23}$ mol <sup>-1</sup> ) |                                                    |
|    |     |                                                                                                                                                                                                                                                                                                                   | Answers written in the margins will not be marked. |
|    |     |                                                                                                                                                                                                                                                                                                                   | Answers written in the                             |
|    |     | (2 marks)                                                                                                                                                                                                                                                                                                         |                                                    |
|    |     |                                                                                                                                                                                                                                                                                                                   |                                                    |

Go on to the next page

١

Answers written in the margins will not be marked.

- 8. Natural gas is an important energy source for electricity generation. It contains mainly methane  $(CH_4)$ .
  - (a) Write the general formula of the molecules in the homologous series that methane belongs to.

(1 mark)

(b) The combustion of methane is an exothermic reaction. Its chemical equation is shown below:

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ 

(i) Complete the table below by stating all the covalent bond(s) that are broken and formed during the combustion of methane.



- (ii) Suggest why the combustion is exothermic in terms of the breaking and forming of covalent bonds.
- (iii) Calculate the standard enthalpy change of combustion of methane. (Standard enthalpy changes of formation :  $CH_4(g) = -74.8 \text{ kJ mol}^{-1}; CO_2(g) = -393.5 \text{ kJ mol}^{-1}; H_2O(l) = -285.9 \text{ kJ mol}^{-1})$

(5 marks)

| 8. | (c) | Some regions tend to generate electricity more by natural gas but less by coal. Give TWO reasons from environmental protection consideration. |                                                    |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     | (2 marks)                                                                                                                                     |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               | ed.                                                |
|    |     |                                                                                                                                               | Answers written in the margins will not be marked. |
|    |     |                                                                                                                                               | ill not l                                          |
|    |     |                                                                                                                                               | rgins w                                            |
|    |     |                                                                                                                                               | the ma                                             |
|    |     |                                                                                                                                               | itten in                                           |
|    |     |                                                                                                                                               | vers wr                                            |
|    |     |                                                                                                                                               | Ansv                                               |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |
|    |     |                                                                                                                                               |                                                    |

## PART II

Answer ALL questions. Write your answers in the spaces provided.

9. Consider the reaction below:

$$CH_3(CH_2)_7CH = CH(CH_2)_7CO_2CH_3(l) + H_2(g) \xrightarrow{\quad \text{catalyst} \quad } CH_3(CH_2)_7CH_2CH_2(CH_2)_7CO_2CH_3(l)$$
 methyl oleate

At room temperature and pressure, a micro-scale experiment was performed using the set-up shown below in which 0.080~g of methyl oleate in an organic solvent was allowed to react with excess  $H_2(g)$ . The  $H_2(g)$  flowed from the inverted measuring cylinder to the reacting flask through the tubing.



(a) State one advantage of conducting this reaction in a micro-scale experiment.

(1 mark)

(b) Explain why the right end of the tubing was placed at the uppermost position of the inverted measuring cylinder.

(1 mark)

(c) State an expected observation in the inverted measuring cylinder during the reaction.

(1 mark)

Answers written in the margins will not be marked.

9. (d) Calculate the theoretical volume of H<sub>2</sub>(g) needed for the reaction to complete at room temperature and pressure.

(Molar volume of gas at room temperature and pressure =  $24 \text{ dm}^3$ ; Relative molecular mass: methyl oleate = 296.0)

(3 marks)

Answers written in the margins will not be marked.

(e) (i) Sketch, in the graph below, the variation of the volume of H<sub>2</sub>(g) in the measuring cylinder with time from start until the completion of the reaction. You should label this sketch as 'A'. (The measuring cylinder initially contained 10.0 cm<sup>3</sup> of H<sub>2</sub>(g). The first few points have been given in the graph to facilitate the sketch.)



(ii) In the same graph above, give another sketch as required in (i) but only using 0.040 g of methyl oleate for the reaction while the other conditions remain unchanged. You should label this sketch as 'B'.

(2 marks)

(i) Na<sub>2</sub>O

(ii) Cl<sub>2</sub>O

Answers written in the margins will not be marked.

(4 marks)

(b) Using iron as an example, illustrate TWO characteristics of transition metals.

(2 marks)

Under fixed conditions,  $[H_2O(1)]$  is considered as a constant. In consideration of the definition of  $K_c$ ,  $[H^+(aq)][OH^-(aq)]$  would also be a constant.

- (a) The pH of an aqueous solution is defined as  $-\log[H^+(aq)]$ . The pH of water equals 7.0 at 298 K. Find, at this temperature, the :
  - (i)  $[H^+(aq)]$
  - (ii)  $[H^{+}(aq)][OH^{-}(aq)]$

(3 marks)

(b)  $[H_2O(l)]$  equals 55.6 mol dm<sup>-3</sup> at 298 K. Suggest why  $[H_2O(l)]$  is considered as a constant with reference to the values of  $[H^+(aq)]$  and  $[OH^-(aq)]$ .

(1 mark)

(c) Explain whether the pH of water at 328 K would be less than 7.0, equal to 7.0, or greater than 7.0.

(2 marks)

Answers written in the margins will not be marked.

Outline a synthetic route, with no more than three steps, to obtain the following compound:

For each step, give the reagent(s), reaction conditions (as appropriate) and structure of the organic product.

(3 marks)

Answers written in the margins will not be marked.

PERIODIC TABLE 周期表

| GROUP 族  | P<br>狱 |             |       |              |         |              |                   |       |       |       |       |       |       |                  |       |          |       |
|----------|--------|-------------|-------|--------------|---------|--------------|-------------------|-------|-------|-------|-------|-------|-------|------------------|-------|----------|-------|
|          |        |             |       | \            | ato /   | mic numb     | atomic number 原子序 | 坐     |       |       |       |       |       |                  |       |          | 0     |
|          |        |             |       | 1            |         |              |                   |       |       |       |       |       |       |                  |       |          | 2     |
|          |        |             |       | Н            |         |              |                   |       |       |       |       |       |       |                  |       |          | He    |
| -        | II     |             |       | -1.0<br>-0.1 |         |              |                   |       |       |       |       | III   | ΛI    | >                | M     | VII      | 4.0   |
| 3        |        |             |       |              |         |              |                   |       |       |       |       | 5     | 9     | 7                | 8     | 6        | 10    |
| Ę        |        |             |       | /            | /       |              |                   |       |       |       |       | В     | ပ     | Z                | 0     | <u> </u> | Ne    |
| 6.9      |        |             |       |              | /       |              |                   |       |       |       |       | 10.8  | 12.0  | 14.0             | 16.0  | 19.0     | 20.2  |
| =        | 12     | <del></del> |       |              | \<br>Fe | elative ator | atomic mass       | 相對原子  | 2質量   |       |       | 13    | 14    | 15               | 16    | 17       | 18    |
| Na       |        |             |       |              |         |              |                   |       |       |       |       | ΑI    | Si    | Ь                | S     | ت<br>ت   | Ar    |
| 23.0     |        |             |       |              |         |              |                   |       |       |       |       | 27.0  | 28.1  | 31.0             | 32.1  | 35.5     | 40.0  |
| 19       | 1      | 21          | 22    |              | 24      | 25           | 26                | 27    | 28    | 29    | 30    | 31    | 32    | 33               | 34    | 35       | 36    |
| <b>×</b> |        | Sc          | Ï     |              | Ç       | Mn           | Fe                | రి    | Z     | Cn    | Zn    | Сa    | Ge    | As               | Se    | Br       | Kr    |
| 39.1     |        | 45.0        | 47.9  |              | 52.0    | 54.9         | 55.8              | 58.9  | 58.7  | 63.5  | 65.4  | 2.69  | 72.6  | 74.9             | 79.0  | 6.62     | 83.8  |
| 37       |        | 39          | 40    | i            | 42      | 43           | 44                | 45    | 46    | 47    | 48    | 65    | 95    | 51               | 52    | 53       | 54    |
| Rb       |        | Y           | Zr    |              | Mo      | Tc           | Ru                | Rh    | Pd    | Ag    | Cq    | In    | Sn    | $^{\mathrm{qs}}$ | Te    | _        | Xe    |
| 85.5     |        | 88.9        | 91.2  |              | 95.9    | (86)         | 101.1             | 102.9 | 106.4 | 107.9 | 112.4 | 114.8 | 118.7 | 121.8            | 127.6 | 126.9    | 131.3 |
| 55       |        | 57 *        | 72    | ŀ            | 74      | 75           | 9/                | 77    | 78    | 62    | 80    | 81    | 82    | 83               | 84    | 85       | 98    |
| C        |        | Гa          | Ht    |              | *       | Re           | õ                 | 1     | F     | Αn    | Hg    | E     | Pb    | Bi               | Po    | At       | Rn    |
| 132.9    |        | 138.9       | 178.5 | 180.9        | 183.9   | 186.2        | 190.2             | 192.2 | 195.1 | 197.0 | 200.6 | 204.4 | 207.2 | 209.0            | (209) | (210)    | (222) |
| 87       |        | ** 68       | 104   |              |         |              |                   |       |       |       |       |       |       |                  |       |          |       |
| Fr       |        | Ac          | Rf    | Dp           |         |              |                   |       |       |       |       |       |       |                  |       |          |       |
| (223)    |        | (227)       | (261) | (262)        |         |              |                   |       |       |       |       |       |       |                  |       |          |       |

| * | 58    | 59    | 09    | 61    | 62    | 63    | 64       | 65    | 99    | <i>L</i> 9 | 89    | 69    | 70    | 71    |
|---|-------|-------|-------|-------|-------|-------|----------|-------|-------|------------|-------|-------|-------|-------|
|   | Ce    | Pr    | PN    | Pm    | Sm    | Eu    | PS<br>Cq | Tp    | Dy    | Ho         | Er    | Tm    | ΛP    | Γn    |
|   | 140.1 | 140.9 | 144.2 | (145) | 150.4 | 152.0 | 157.3    | 158.9 | 162.5 | 164.9      | 167.3 | 168.9 | 173.0 | 175.0 |
| * | 90    | 91    | 92    | 93    | 94    | 95    | 96       | 97    | 86    | 66         | 100   | 101   | 102   | 103   |
|   | Th    | Pa    | n     | aN    | Pu    | Am    | Cm       | Bķ    | Cť    | Es         | Fm    | Md    | %     | Lr    |
|   | 232.0 | (231) | 238.0 | (237) | (244) | (243) | (247)    | (247) | (251) | (252)      | (257) | (258) | (259) | (260) |