B

Please stick the barcode label here.

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY (G KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2016)

PHYSICS PAPER 1

SECTION B: Question-Answer Book B

This paper must be answered in English

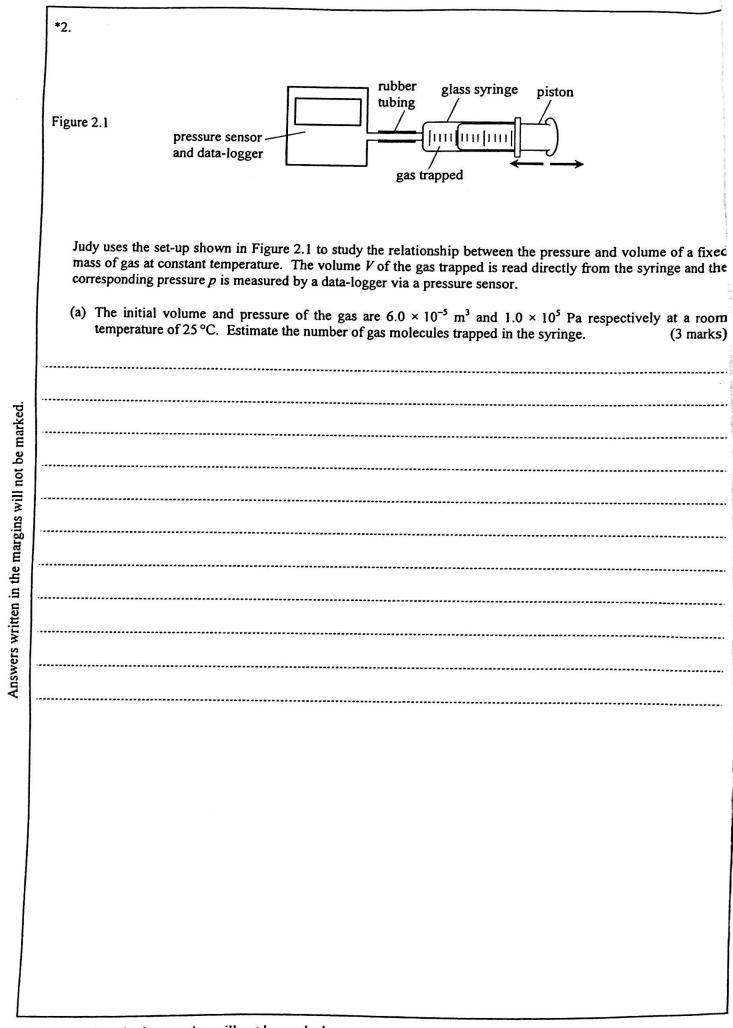
INSTRUCTIONS FOR SECTION B

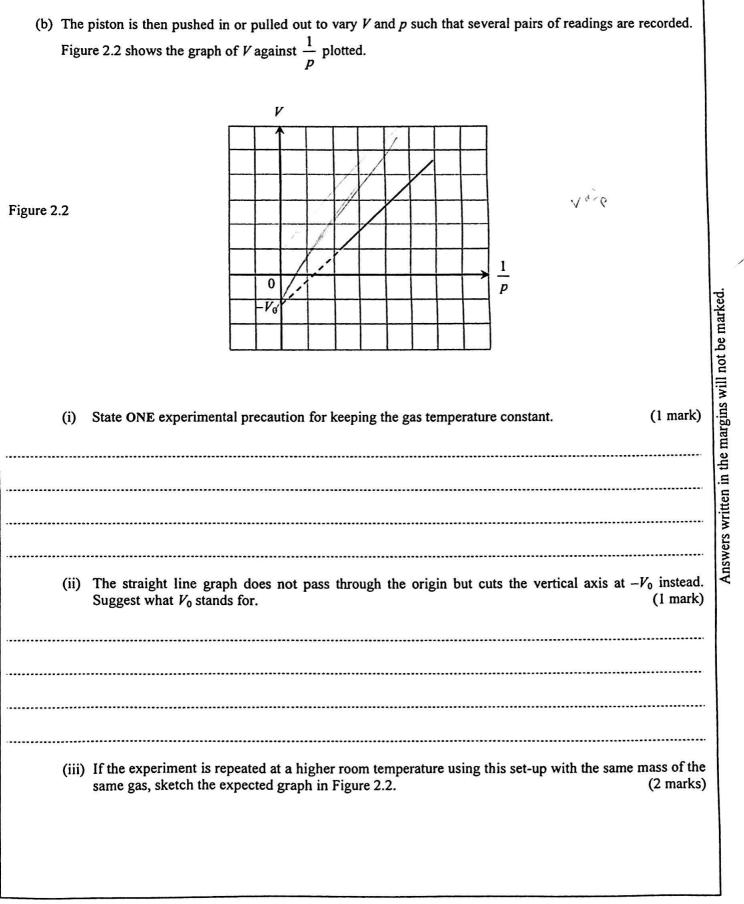
-SE

1B

- After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7 and 9.
- (2) Refer to the general instructions on the cover of the Question Paper for Section A.
- (3) Answer ALL questions.
- (4) Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (5) Graph paper and supplementary answer sheets will be provided on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string **INSIDE** this Question-Answer Book.
- (6) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

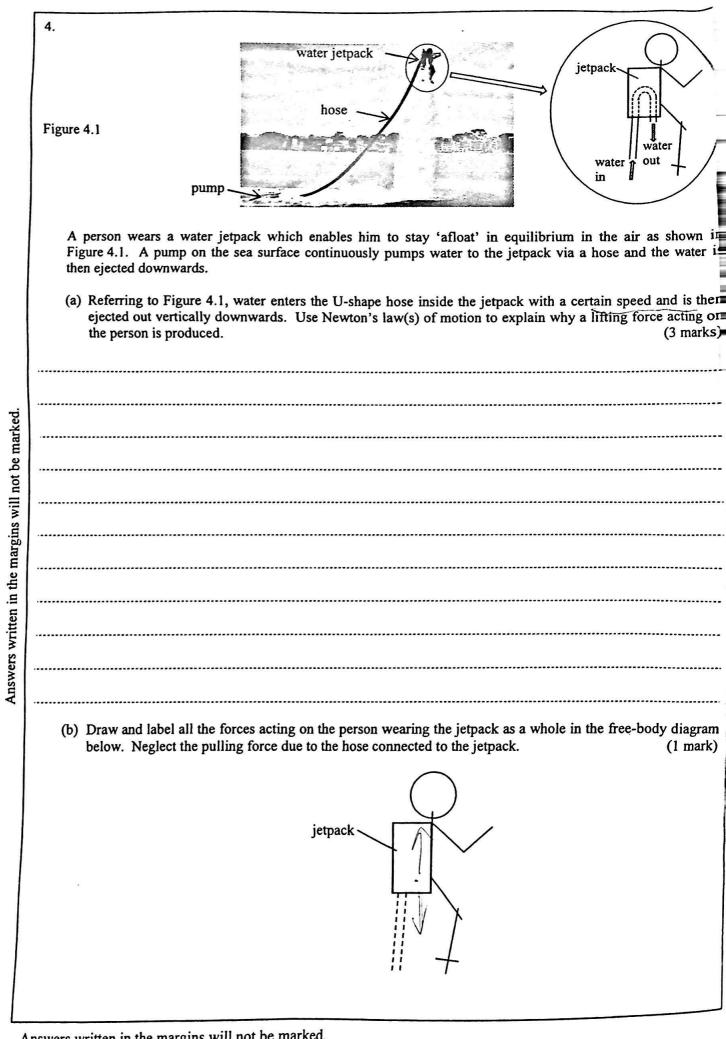
Candidate Number					


Question No.	Marks
1	8
2	7
3	9
4	11
5	11
6	10
7	9
8	11
9	8

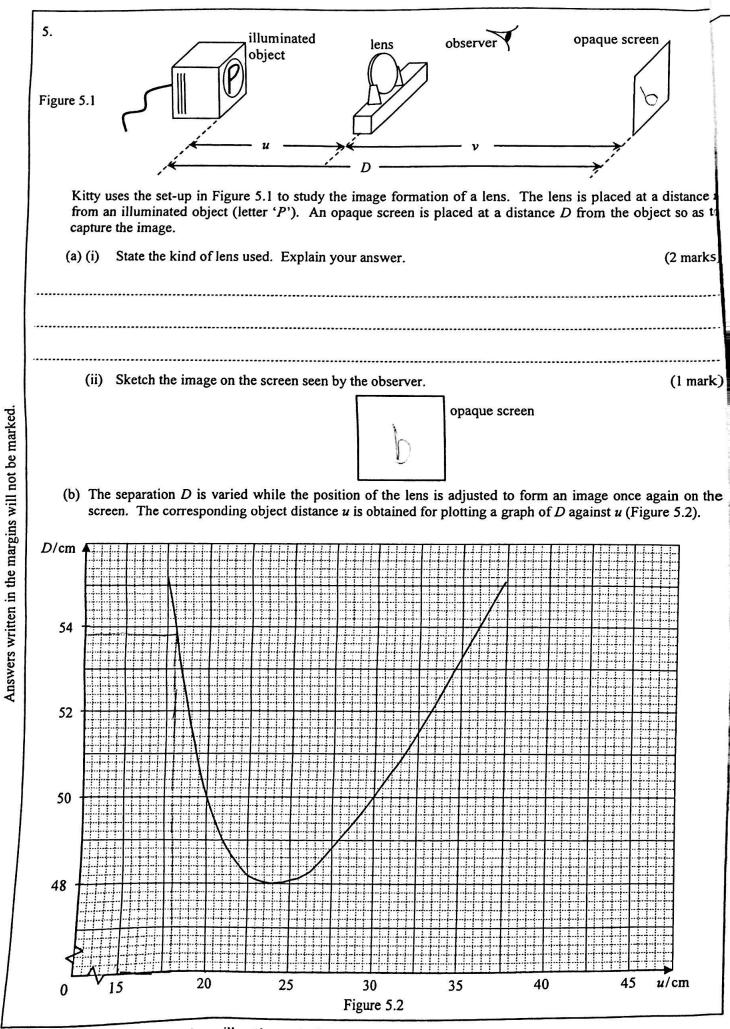

I. The	e following experimental items are provided for estimating the specific heat capacity of bronze c_b :	
	a bronze sphere of mass 0.80 kg hung with a thread at room temperature T_0 a polystyrene cup containing 0.50 kg of water at room temperature T_0 a water bath maintained at 80 °C a thermometer a stirrer a towel	
(a)	Describe the procedures of the experiment and state TWO experimental precautions to be take down an equation for finding c_b . Given: specific heat capacity of water = 4200 J kg ⁻¹ °C ⁻¹	(6 mark

Please stic	k the	barcode	label	here.
-------------	-------	---------	-------	-------

(b)	The value of c_b found in the experiment in (a) is lower than the actual value.	Explain. (2 marks)


Please stick the barcode label here.

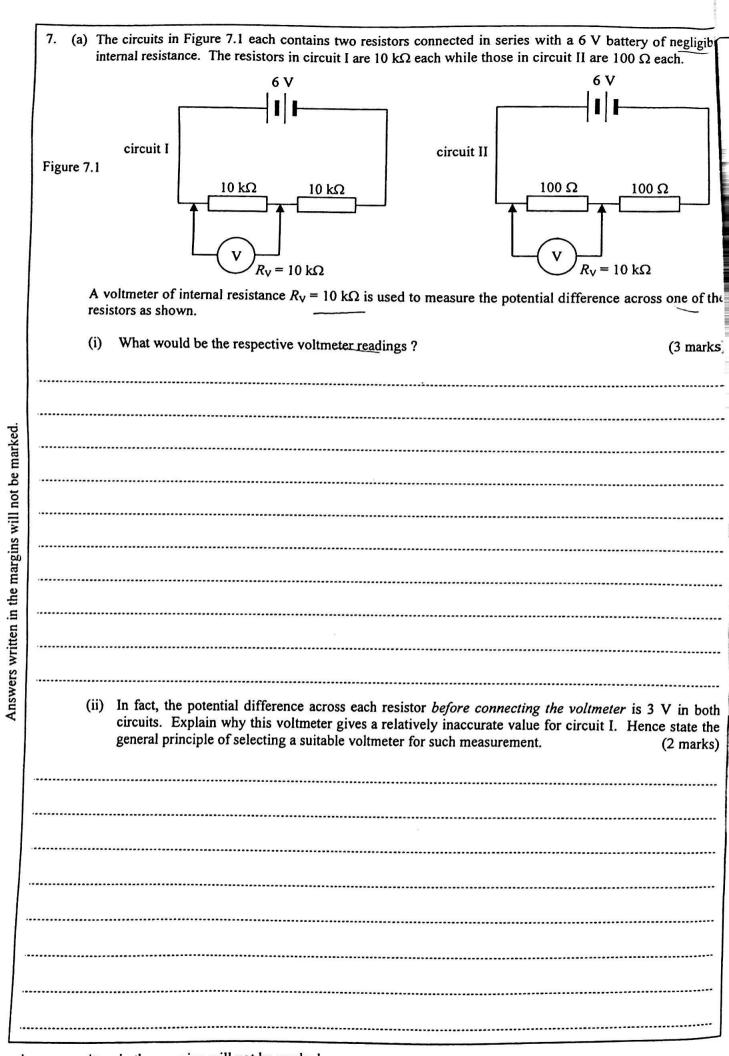
and it reac $(g = 9.81 \text{ r})$	the state ground at $t = T$. The velocity-time (The lift goes down from the top of a buildi (v-t) graph of the lift is shown in Figure 3.	ng at time i 1.
Figure 3.1	$v/m s^{-1}$ 6 A 0 2 A B A B A B A B A B A B A B A B B B B B B B B	$\frac{t}{12} \xrightarrow{t=T} t/s$	
(a) Calcula	te the acceleration of the lift from $t = 0$ to	<i>t</i> = 2 s.	(2 ma
569 N and (b) Match		is ride on the lift and the readings register C of the ride (chown in Figure 3.1)	
	s of the person. A: B:	C:	Hence de (3 ma
	s of the person.		
	s of the person.		


Please stick the barcode label here.

(c)	(i)	Show that $T = 15$ s.	(2 marks)
••••••			
		·	
	(ii)	Hence estimate the height of the building.	(2 marks)
	•••••		

Please stick the barcode label here.

(c) Sup the	pose that water enters the jetpack with a speed of 10 m s ⁻¹ vertically upwards and is then ejected out same speed vertically downwards. ($g = 9.81 \text{ m s}^{-2}$)	at
(i)	Just by considering the change of momentum of the water, estimate how much water, in kg, has be ejected per second to provide a lifting force of 1000 N needed. (2 mark	
		•••
	Water is pumped to the water jetpack at a height of 7.5 m above sea surface and then ejected from	 it.
()	By considering the gain in mechanical energy of the water, estimate the minimum output power the pump. (3 mark	of
ent	e person changes to staying 'afloat' in equilibrium at a higher position. If the speed by which wa ers and is ejected from the jetpack remains the same, would the amount of water ejected per second ater than, equal to or smaller than the result found in (c)(i)? Explain. (Neglect the weight of the hos (2 mar	i be se.)
		•••••



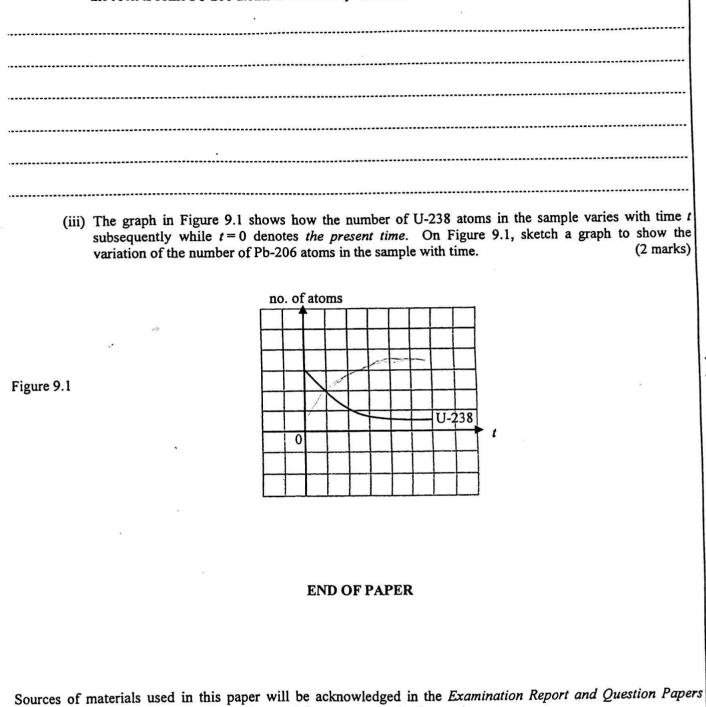
Answers written in the margins will not be marked.

(i)		ween																											; separat (2 mar	
In the frays fro)W, 2	4 <i>B</i> 1	epr	ese	nts 1			umi		ted	ob	jec			n is	at	18	cn			th Can		ens	<i>L</i> .	<i>p</i> ,	<i>q</i> an	d <i>r</i> are li	 ght
	B																			<u> </u>		~							princij axis	bal
																										X			2	
(ii) (iii)	Ind Ind									57					5											р,	q a	und r		arks) nark)
) Ke	J	Foca g the	l le e ot	ngt	h = t a	nd :) scre	ો (ત een	fix		in	po	siti	on,	su	gge	est	wh	ner	e K	Litt	ys h	ho eig	uld ht	of	thi	s ne	lens to w imag inal ima (2 m	such e ge
															••••	••••			••••		••••	••••	••••			•••••				
								•••••			••••		••••							••••					••••	••••		•••••		

Figure 6.1		ruler with cm scale marks	
(i) Find the waveleng	th of the laser beam.		(3 m
	lit width has to be very narrow in order fo		erved.
		4	(2 m

(b)						g of 500 lines per n		af the method	on the
	(i)	Find the screen f	e separation l or the same e	between the xperimenta	e central bright a al settings.	spot and first-order	r bright spot	of the pattern (3	marks)
					1 1 4 4		to and on the	oreen when u	sing this
	(ii)	Sketch diffract	the pattern, u ion grating.	ip to the sec A first-orde	cond-order, that er bright spot has	you would expect is already been drav	vn for you.	(2 marks)
					centre	e of the pattern	· · · · · · · · · · · · · · · · · · ·		1
					Ť	Γ.		FI	
	, * *				first-order brigh	it spot			

intern	it III shows a possible method for measuring resistance using a voltmeter and an ammeter. The al resistances of the voltmeter and the ammeter are R_V and R_A respectively and their readings V_m and
<i>I</i> _m giv	e the measured resistance $R_{\rm m} = \frac{V_{\rm m}}{I_{\rm m}}$. The true resistance value of the resistor is R.
Figure 7.2	circuit III $\begin{array}{c} R_{V} \\ R_{V} \\ R_{V} \\ R_{V} \\ R_{V} \\ R_{V} \\ R_{A} \\ R_{$
	State which reading(s), V_m , I_m or both, do(es) NOT give the <i>true voltage</i> across the resistor and/or the <i>true current</i> passing through the resistor. Hence write down an equation relating R_A , R_m and R .
	(2 marks)
	×
	Find the percentage error associated with R_m when measuring the resistance of this resistor. Given: $R_V = 10 \text{ k}\Omega$, $R_A = 1 \Omega$ and $R = 10 \Omega$. (2 marks)
	·


Read the following passage about lightning and answer the questions that follow. 8. thundercloud lightning lightning d induced charges current 77777777777777 ground Lightning occurs when charges accumulate in the clouds to such an extent that the electric field in Answers written in the margins will not be marked. the atmosphere is strong enough to cause the air to lose its insulating properties. The threshold electric field for 'breakdown' to occur is about 3×10^5 V m⁻¹ above which electrons or ions in the atmosphere can pass through the air between clouds and the ground or between clouds and clouds. The peak current of a typical lightning bolt can reach about 30000 A. How the charges are separated and accumulated in the clouds is not fully understood yet. In most cases, negative charges are at the base of the cloud and positive charges are induced on the ground. (a) (i) What is the meaning of 'breakdown' in the passage? (1 mark) *(ii) The thundercloud's base and the ground can be modeled as two parallel plates with opposite charges. If the negative charges distributed at the cloud's base are about d = 2 km from the ground, find the potential difference between the cloud and the ground when the electric field in the atmosphere just reaches the threshold of 'breakdown'. (2 marks)

	flows vertically upwards to the thundercloud from the ground. Upward lightning current Diagram NOT drawn to scale ground
(b) (i)	State the direction of the magnetic field (to the left / to the right / into paper / out of paper) produced at point O by the lightning current. Estimate the magnetic field strength's peak value at O. (3 marks)
(ii)	Explain why within the very short duration of lightning an induced current first flows in the coil in a certain direction and then reverses. Your answer should include the directions of the induced current in the coil. The coil. The coil. The coil. The coil is a certain direction of lightning an induced current first flows in the coil in a certain direction and then reverses. Your answer should include the directions of the induced current in the coil. The coil. The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the induced current (3 marks) The coil is a certain direction of the certain direction of
(iii)	Among the physical quantities related to lightning, electric field in the atmosphere, lightning current and magnetic field due to lightning, suggest which one can be monitored so as to give fore-warning of lightning. Explain your choice. (2 marks)

2016-DSE-PHY 1B-17

9. Part of the decay series of uranium-238 (U-238) is shown below. The end product lead-206 (Pb-206) is stable $\overset{238}{_{92}}\text{U} \xrightarrow[4.5\times10^9]{\alpha} \text{ years } \text{Th} \xrightarrow{\beta} \text{Pa} \rightarrow \dots \rightarrow \overset{206}{_{82}}\text{Pb}$ (a) When a U-238 nucleus decays to a Pb-206 nucleus, how many α -particle(s) and β -particle(s) are emitted? (2 marks (b) As the first decay in the above chain from U to Th has a half-life much longer than those of subsequent decays, the decay from U-238 to Pb-206 can be simplified to a single decay with half-life 4.5×10^9 years: Answers written in the margins will not be marked. $\stackrel{^{238}_{92}}{\longrightarrow} U \xrightarrow{^{206}_{82}} Pb$ Suppose that a uranium-bearing rock contains only U-238 and no Pb-206 at the time when it was formed long ago by solidification of molten material. In a particular sample of the rock, it is found that the $\frac{\text{number of Pb-206 atoms}}{\text{number of U-238 atoms}} is \frac{2}{3} \text{ at present.}$ ratio Estimate the age of the rock. Assume that all Pb-206 atoms come from the decay of U-238 originally (i) present in the sample and ignore the small number of U-238 atoms which have decayed but have not yet become Pb-206. (2 marks)

 State, with a reason, whether the answer in (b)(i) is an overestimate or an underestimate of the age of the rock if some Pb-206 atoms have actually been lost.
 (2 marks)

Answers written in the margins will not be marked.

published by the Hong Kong Examinations and Assessment Authority at a later stage.