2020-DSE MATH CP PAPER 2

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2020

## MATHEMATICS Compulsory Part PAPER 2

11:30 am - 12:45 pm (11/4 hours)

## **INSTRUCTIONS**

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the 'Time is up' announcement.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2020

Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

## Section A

1. 
$$\frac{6x}{(3x^{-5})^{-2}} =$$

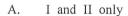
- A.  $54x^8$ .
- B.  $\frac{2x^8}{3}$ .
- C.  $\frac{54}{x^9}$ .
- D.  $\frac{2}{3x^9}$ .

2. If 
$$a(a+b) = 2(b-a)$$
, then  $b =$ 

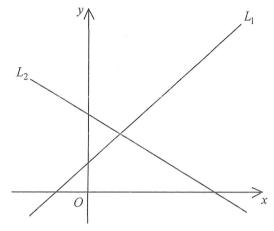
- A.  $\frac{a^2 + a}{2 + a}$ .
- $B. \qquad \frac{a^2 2a}{2 + a} \ .$
- $C. \qquad \frac{a^2 + 2a}{2 a} \ .$
- $D. \qquad \frac{a^2 a}{2 a} \ .$

$$3. \qquad \frac{5}{4k+3} - \frac{2}{4k-3} =$$

- A.  $\frac{12k 21}{16k^2 9} .$
- B.  $\frac{12k+9}{16k^2-9}$ .
- C.  $\frac{14k-21}{16k^2-9}$ .
- D.  $\frac{14k+9}{16k^2-9}$ .


- 4. (3a+2b)(4a-5b)-a(6a+4b)=
  - A. (3a+2b)(2a-5b).
  - B. (3a+2b)(6a-5b).
  - C. (3a-2b)(2a+5b).
  - D. (3a-2b)(6a+5b).
- 5. Let  $f(x) = 3x^2 x 2$ . If  $\beta$  is a constant, then  $f(1+\beta) f(1-\beta) =$ 
  - A.  $2\beta$ .
  - B.  $10\beta$ .
  - C.  $6\beta^2 2$ .
  - D.  $6\beta^2 2\beta$ .
- 6. Let  $g(x) = ax^3 + 4ax^2 24$ , where a is a constant. If x + 2 is a factor of g(x), then g(2) =
  - A. -96.
  - B. 0.
  - C. 3.
  - D. 48.
- 7. If h and k are constants such that  $(x+h)(x+6) \equiv (x+4)^2 + k$ , then k =
  - A. -28.
  - В. –16.
  - C. -4.
  - D. 2.

8. In the figure, the equations of the straight lines  $L_1$  and  $L_2$  are x + ay + b = 0 and bx + y + c = 0 respectively. Which of the following are true?




II. 
$$ab < 1$$

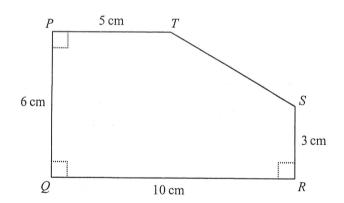
III. 
$$ac < b$$



D. I, II and III

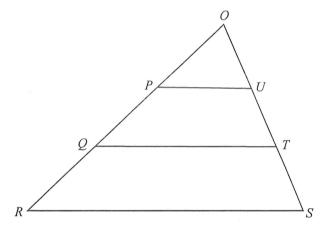


9. The cost of a toy is x% lower than its selling price. After selling the toy, the percentage profit is 25%. Find x.

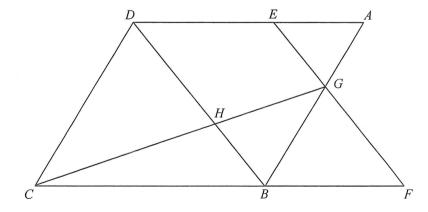

10. The actual area of a golf course is  $0.75\,\mathrm{km}^2$ . If the area of the course on a map is  $300\,\mathrm{cm}^2$ , then the scale of the map is

11. It is given that w varies as the cube of u and the square root of v. When u=2 and v=4, w=8. When u=4 and v=9, w=8

12. In the figure, the 1st pattern consists of 3 dots. For any positive integer n, the (n+1)th pattern is formed by adding (2n+1) dots to the nth pattern. Find the number of dots in the 7th pattern.




- A. 15
- B. 27
- C. 38
- D. 51
- 13. The solution of 5-4x < 9 and  $\frac{2x-3}{7} > 1$  is
  - A. x < -1.
  - B. x > -1.
  - C. x < 5.
  - D. x > 5.
- 14. In the figure, PQRST is a pentagon, where all the measurements are correct to the nearest cm. Let  $A \text{ cm}^2$  be the actual area of the pentagon. Find the range of values of A.
  - A.  $27.83 \le A < 31.83$
  - B.  $44.75 \le A < 60.75$
  - C.  $46.75 \le A < 63.25$
  - D.  $48.25 \le A < 64.75$



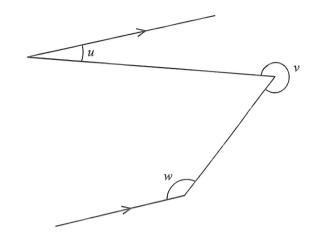

- 15. The angle of a sector is decreased by 60% but its radius is increased by k%. If the arc length of the sector remains unchanged, find the value of k.
  - A. 40
  - B. 60
  - C. 67
  - D. 150

- 16. If the volume of a right circular cylinder of base radius 5a cm and height 7b cm is 525 cm<sup>3</sup>, then the volume of a right circular cone of base radius 7a cm and height 5b cm is
  - A.  $175 \, \text{cm}^3$ .
  - B.  $245 \, \text{cm}^3$ .
  - C.  $490 \text{ cm}^3$ .
  - D.  $735 \, \text{cm}^3$ .
- 17. In the figure, P and Q are points lying on OR while U and T are points lying on OS such that OP = PQ = QR and PU // QT // RS. The ratio of the area of the trapezium PQTU to the area of the trapezium QRST is
  - A. 1:2.
  - B. 2:3.
  - C. 3:5.
  - D. 4:9.

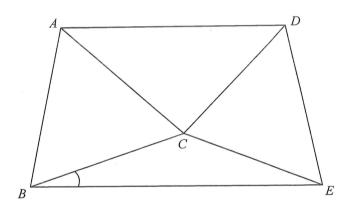


- 18. In the figure, ABCD is a parallelogram. Let E be a point lying on AD such that AE:ED=2:5. CB is produced to the point F such that BF=DE. Denote the point of intersection of AB and EF by G. It is given that BD and CG intersect at the point H. If the area of  $\Delta AEG$  is  $48 \, \mathrm{cm}^2$ , then the area of  $\Delta CDH$  is
  - $A. \qquad 98\,cm^2\ .$
  - B.  $343 \, \text{cm}^2$ .
  - $C. \qquad 420 \ cm^2 \ .$
  - D.  $588 \, \text{cm}^2$ .




19. According to the figure, which of the following must be true?

I. 
$$u-v+w=0^{\circ}$$


II. 
$$u + v - w = 180^{\circ}$$

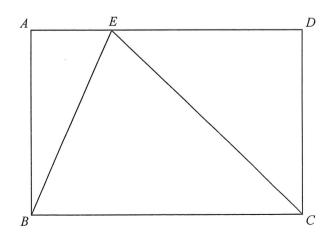
III. 
$$u + v + w = 450^{\circ}$$

- A. I only
- B. II only
- C. I and III only
- D. II and III only

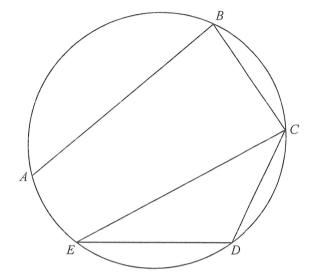


20. In the figure, ABC is an equilateral triangle and CDE is an isosceles triangle with CD = CE. If  $\angle DCE = 78^{\circ}$  and  $\angle ADC = \angle CAD = 40^{\circ}$ , then  $\angle CBE =$ 




21. In the figure, ABCD is a rectangle. Let E be a point lying on AD such that BE = 8 cm and CE = 15 cm. If BC = 17 cm, find the area of the rectangle ABCD.

A. 
$$60 \text{ cm}^2$$


B. 
$$68 \text{ cm}^2$$

C. 
$$120 \text{ cm}^2$$

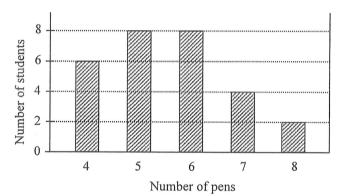
D. 
$$136 \text{ cm}^2$$



- 22. In the figure, ABCDE is a circle. If  $AB=10\,\mathrm{cm}$ ,  $BC=5\,\mathrm{cm}$ ,  $\angle ABC=90^\circ$  and  $\angle CED=40^\circ$ , find CD correct to the nearest cm .
  - A. 5 cm
  - B. 6 cm
  - C. 7 cm
  - D. 8 cm



- 23. A ship is  $50 \, \text{km}$  due west of a lighthouse. If the ship moves in the direction  $\, \text{S}60^{\circ} \, \text{E} \,$ , find the shortest distance between the ship and the lighthouse.
  - A. 20 km
  - B. 25 km
  - C. 43 km
  - D. 87 km
- 24. The point P is translated leftwards by 4 units to the point Q. If the coordinates of the reflection image of Q with respect to the y-axis are (5,-1), then the polar coordinates of P are
  - A.  $(1, 45^{\circ})$ .
  - B. (1, 225°).
  - C.  $(\sqrt{2}, 45^{\circ})$ .
  - D.  $(\sqrt{2}, 225^{\circ})$ .


- 25. Let A be the point of intersection of the straight lines 9x+4y-7=0 and 9x-4y+7=0. If P is a moving point in the rectangular coordinate plane such that the distance between P and A is 8, then the locus of P is a
  - A. circle.
  - B. triangle.
  - C. quadrilateral.
  - D. regular hexagon.

- 26. The equation of the straight line L is kx+4y-2k=0, where k is a constant. If L is perpendicular to the straight line 6x-9y+4=0, find the y-intercept of L.
  - A. -3
  - B. -2
  - C. 2
  - D. 3

- 27. The equations of the circles  $C_1$  and  $C_2$  are  $2x^2+2y^2+4x+8y-149=0$  and  $x^2+y^2-8x-20y-53=0$  respectively. Which of the following is/are true?
  - I. The centre of  $C_1$  lies on  $C_2$ .
  - II. The radii of  $C_1$  and  $C_2$  are equal.
  - III.  $C_1$  and  $C_2$  intersect at two distinct points.
    - A. I only
    - B. II only
    - C. I and III only
    - D. II and III only

- 28. Two numbers are randomly drawn at the same time from four cards numbered 3, 5, 7 and 9 respectively. Find the probability that the product of the numbers drawn is greater than 35.
  - A.  $\frac{1}{2}$
  - B.  $\frac{1}{3}$
  - C.  $\frac{2}{3}$
  - D.  $\frac{3}{8}$
- 29. The bar chart below shows the distribution of the numbers of pens owned by some students. Find the inter-quartile range of the distribution.



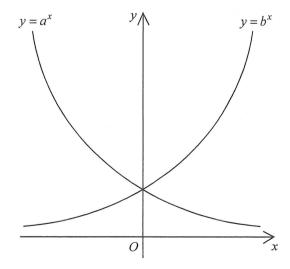


30. Consider the following integers:

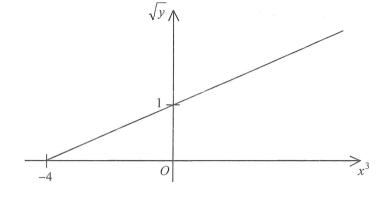
n

m

Let x, y and z be the median, the mean and the mode of the above integers respectively. If the range of the above integers is 9, which of the following must be true?


I. 
$$x = 8$$

II. 
$$y = 8$$

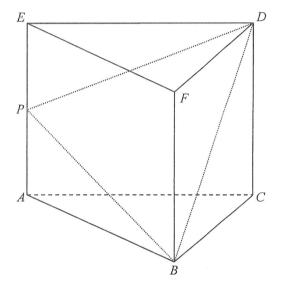

III. 
$$z = 8$$

## Section B

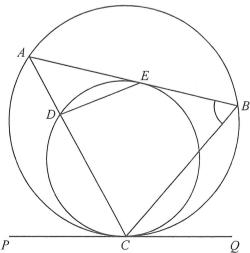
- 31.  $B00000000000030_{16} =$ 
  - A.  $10 \times 2^{60} + 48$ .
  - B.  $11 \times 2^{60} + 48$ .
  - C.  $10 \times 2^{64} + 768$ .
  - D.  $11 \times 2^{64} + 768$ .
- 32. If the roots of the equation  $(\log_{\pi} x)^2 10\log_{\pi} x + 24 = \log_{\pi} x$  are  $\alpha$  and  $\beta$ , then  $\alpha\beta =$ 
  - A.  $\pi^{10}$ .
  - B.  $\pi^{11}$ .
  - C.  $\log_{\pi} 10$ .
  - D.  $\log_{\pi} 11$ .
- 33. The figure shows the graph of  $y = a^x$  and the graph of  $y = b^x$  on the same rectangular coordinate system, where a and b are positive constants. If the graph of  $y = a^x$  is the reflection image of the graph of  $y = b^x$  with respect to the y-axis, which of the following are true?
  - I. a < 1
  - II. b > 1
  - III. ab = 1
    - A. I and II only
    - B. I and III only
    - C. II and III only
    - D. I, II and III



- 34. The graph in the figure shows the linear relation between  $x^3$  and  $\sqrt{y}$ . If x=2, then y=
  - A. 3.
  - B. 8.
  - C. 9.
  - D. 33.




- 35. If a > 0, which of the following are arithmetic sequences?
  - I.  $\log a^{-3}$ ,  $\log a$ ,  $\log a^5$
  - II. 8-4a, 9-5a, 10-6a
  - III.  $\cos(90 a)^{\circ}, \cos 90^{\circ}, \cos(90 + a)^{\circ}$ 
    - A. I and II only
    - B. I and III only
    - C. II and III only
    - D. I, II and III
- 36. Consider the following system of inequalities:


$$\begin{cases} 0 \le x \le 2 \\ 2x + y + 3 \ge 0 \\ x + y + 1 \le 0 \end{cases}$$

- Let D be the region which represents the solution of the above system of inequalities. Find the constant k such that the least value of 4x + 3y + k is 24, where (x, y) is a point lying in D.
  - A. 25
  - B. 27
  - C. 37
  - D. 53

- 37. Define  $z_1 = \frac{2+ki}{1+i}$  and  $z_2 = \frac{k+5i}{2-i}$ , where k is a real number. If the imaginary part of  $z_1$  is equal to the imaginary part of  $z_2$ , then  $z_1 z_2 =$ 
  - A. -20 .
  - B. 0.
  - C. 3.
  - D. 10.
- 38. In the figure, ABCDEF is a right triangular prism. P is a point lying on AE. If AB = AC = 12 cm, AP = 9 cm, EP = 5 cm and BD = 2k cm, find the area of  $\triangle BDP$ .
  - A.  $\sqrt{(k^2-1)(196-k^2)}$  cm<sup>2</sup>
  - B.  $\sqrt{(k^2-1)(196+k^2)}$  cm<sup>2</sup>
  - C.  $\sqrt{(k^2+1)(196-k^2)}$  cm<sup>2</sup>
  - D.  $\sqrt{(k^2+1)(196+k^2)}$  cm<sup>2</sup>



- 39. In the figure, ABC and CDE are circles such that ADC is a straight line. PQ is the common tangent to the two circles at C. AB is the tangent to the circle CDE at E. If  $\angle ADE = 100^{\circ}$  and  $\angle BCQ = 35^{\circ}$ , then  $\angle ABC = 100^{\circ}$ 
  - A. 55°.
  - B. 65°.
  - C. 70°.
  - D. 80°.



- 40. The equations of the three sides of a triangle are 4x+3y=24, 4x-3y=24 and x=a, where a is a constant. If the x-coordinate of the in-centre of the triangle is 31, then a=
  - A. 15.
  - B. 31.
  - C. 45.
  - D. 51.

- 41. Find the range of values of c such that the circle  $x^2 + y^2 6x + cy 7 = 0$  and the straight line x y + 9 = 0 intersect.
  - A.  $-56 \le c \le 8$
  - B.  $-8 \le c \le 56$
  - C.  $c \le -56$  or  $c \ge 8$
  - D.  $c \le -8$  or  $c \ge 56$

- 42. A queue is formed by 6 boys and 5 girls. If no boys are next to each other, how many different queues can be formed?
  - A. 86 400
  - B. 172 800
  - C. 213 444
  - D. 39916800

- 43. There are 8 Chinese books and 7 English books in a box. If 5 books are randomly chosen from the box at the same time, find the probability that at most 3 Chinese books are chosen.
  - A.  $\frac{2}{11}$
  - B.  $\frac{9}{11}$
  - C.  $\frac{61}{143}$
  - D.  $\frac{82}{143}$

- 44. In a test, the difference of the test scores and the difference of the standard scores of two students are 30 marks and 6 respectively. In the test, the standard deviation of the test scores is
  - A. 5 marks.
  - B. 24 marks.
  - C. 25 marks.
  - D. 36 marks.

- 45. The variance of the six numbers 20a+3, 20a+5, 20a+9, 20a+11, 20a+15 and 20a+17 is
  - A. 5.
  - B. 10.
  - C. 25.
  - D. 20a + 25.

**END OF PAPER** 

- 11